193 research outputs found

    Combining Voting Rules Together

    Full text link
    We propose a simple method for combining together voting rules that performs a run-off between the different winners of each voting rule. We prove that this combinator has several good properties. For instance, even if just one of the base voting rules has a desirable property like Condorcet consistency, the combination inherits this property. In addition, we prove that combining voting rules together in this way can make finding a manipulation more computationally difficult. Finally, we study the impact of this combinator on approximation methods that find close to optimal manipulations

    Dominating Manipulations in Voting with Partial Information

    Full text link
    We consider manipulation problems when the manipulator only has partial information about the votes of the nonmanipulators. Such partial information is described by an information set, which is the set of profiles of the nonmanipulators that are indistinguishable to the manipulator. Given such an information set, a dominating manipulation is a non-truthful vote that the manipulator can cast which makes the winner at least as preferable (and sometimes more preferable) as the winner when the manipulator votes truthfully. When the manipulator has full information, computing whether or not there exists a dominating manipulation is in P for many common voting rules (by known results). We show that when the manipulator has no information, there is no dominating manipulation for many common voting rules. When the manipulator's information is represented by partial orders and only a small portion of the preferences are unknown, computing a dominating manipulation is NP-hard for many common voting rules. Our results thus throw light on whether we can prevent strategic behavior by limiting information about the votes of other voters.Comment: 7 pages by arxiv pdflatex, 1 figure. The 6-page version has the same content and will be published in Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI-11

    Most Equitable Voting Rules

    Full text link
    In social choice theory, anonymity (all agents being treated equally) and neutrality (all alternatives being treated equally) are widely regarded as ``minimal demands'' and ``uncontroversial'' axioms of equity and fairness. However, the ANR impossibility -- there is no voting rule that satisfies anonymity, neutrality, and resolvability (always choosing one winner) -- holds even in the simple setting of two alternatives and two agents. How to design voting rules that optimally satisfy anonymity, neutrality, and resolvability remains an open question. We address the optimal design question for a wide range of preferences and decisions that include ranked lists and committees. Our conceptual contribution is a novel and strong notion of most equitable refinements that optimally preserves anonymity and neutrality for any irresolute rule that satisfies the two axioms. Our technical contributions are twofold. First, we characterize the conditions for the ANR impossibility to hold under general settings, especially when the number of agents is large. Second, we propose the most-favorable-permutation (MFP) tie-breaking to compute a most equitable refinement and design a polynomial-time algorithm to compute MFP when agents' preferences are full rankings
    • …
    corecore